Vil du gerne opnå bedre resultater i matematik?

Tretrinsreglen

 

Tretrinsreglen

  • 00Dage
  • 00Timer
  • 00Min
  • 00Sek
Mere info
»

Tretrinsreglen

Vi har introduceret differentialkvotienten, nu skal vi igang med at lære at beregne differentialkvotienten for en række differentiable funktioner ved hjælp af tretrinsreglen

Tretrinsreglen

1. Vi skal først bestemme differenskvotienten for funktionen.

Skærmbillede 2013-10-30 kl. 11.32.53 AM

2. Vi skal herefter reducér udtrykket.

3. Vi skal bestemme grænseværdien for

Skærmbillede 2013-10-30 kl. 8.31.54 PM

Lad os kigge på et eksempel på, hvorledes man anvender tretrinsreglen til at beregne differentialkvotienten af en specifik funktion, nemlig

Skærmbillede 2013-10-30 kl. 8.30.01 PM

Tretrinsreglen giver:

Skærmbillede 2013-10-30 kl. 8.39.02 PM

I grænsetilfældet, tretrinsreglens 3. trin giver

Skærmbillede 2013-10-30 kl. 8.40.06 PM

Dette kan vi også skrive som

Skærmbillede 2013-10-30 kl. 8.41.41 PM

Opgave                                                                                                                                                    Udregn via tretrinsreglen differentialkvotienten for:

TITLE

Se løsningen